HALO OK Trace-Level Oxygen Analyzer

GASES & CHEMICALS	CEMS	ENERGY	ATMOSPHERIC	SEMI & HB LED	SYNGAS	LABORATORY
-------------------	------	--------	-------------	---------------	--------	------------

Designed for trace-level oxygen analysis, the HALO OK offers:

- Industry-leading parts-per-trillion detection capability
- Unprecedented speed of response
- Wide dynamic range
- Absolute measurement (freedom from need for calibration gases)
- Low maintenance and cost of ownership
- Compact, portable package, ideal for both fixed and mobile cart installation
- Direct measurement in many matrices

Leading Choice for Ultra-high Purity Gas Users

Detect gas quality upsets before they damage your process. Using Tiger Optics' HALO OK oxygen analyzer, you can verify oxygen impurity levels with part-pertrillion accuracy, drift-free stability and instantaneous response. You'll find our system exceptionally easy and fast to install, and effortless to maintain, with built-in zero verification. Its robust design – free of moving parts – results in an analyzer that has a high Mean Time Between Failure (MTBF) rate and a very low Cost of Ownership (CoO). With its patented catalytic conversion technique, utilizing a minute amount of hydrogen to cleanly and safely convert oxygen to moisture, the OK offers a fully laser-based solution for Continuous Quality Control of your process. Based on powerful Cavity Ring-down Spectroscopy, the HALO OK aligns with the SEMI F-112 standard for moisture dry-down characterization of gas systems. Pair the new HALO OK with our HALO KA for ppt-level moisture measurement to enjoy the many advantages of profit-boosting CRDS technology for both critical contaminants.

HALO OK Trace-Level Oxygen Analyzer

Performance			
Operating range	See table below		
Detection limit (LDL,	See table below		
24 h peak-to-peak variation)			
Sensitivity (3o)	See table below		
Precision (1σ , greater of)	± 0.75% or 1/3 of Sensitivity		
Accuracy (greater of)	± 4% or 1/2 of LDL		
Speed of response	< 3 minutes to 95%		
Environmental conditions	10°C – 40°C		
	30% – 80% RH (non-condensing)		
Storage temperature	-10°C – 50°C		

Gas Handling System and Conditions

Wetted materials	316L stainless steel		
	10 Ra surface finish		
Leak tested to	1 x 10 ⁻⁹ mbar l / sec		
Gas connections	1/4" male VCR		
Sample inlet pressure	10 – 125 psig (1.7 – 9.6 bara)		
Sample flow rate	0.5 to 1.8 slpm (gas dependent)		
Sample gases	Most inert matrices		
Gas temperature	Up to 60°C		
H ₂ supply requirements*	~15 sccm, 20 – 125 psig		

Dimensions	H x W x D [in (mm)]		
Standard sensor	8.75 x 19 x 23.6 (222 x 483 x 599)		
Weight			
Standard sensor	45 lbs (20.4 kg)		
Electrical			
Alarm indicators	2 user programmable		
	1 system fault		
	Form C relays		
Power requirements	90 – 240 VAC, 50/60 Hz		
Power consumption	200 Watts max.		
Signal output	Isolated 4–20 mA		
User interfaces	5.7" LCD touchscreen		
	10/100 Base-T Ethernet		
	802.11g Wireless (optional)		
	RS-232		

Performance, O ₂ :	Range	LDL ⁺ (peak-to-peak)	Sensitivity (3σ)
In Helium	0 – 0.5 ppm	100 ppt	50 ppt
In Argon	0 – 1 ppm	110 ppt	90 ppt
In Hydrogen	0 – 2 ppm	200 ppt	150 ppt
In Nitrogen	0 – 2.5 ppm	250 ppt	200 ppt

Contact us for additional analytes and matrices or information about our optional purged enclosure.

 $^{*}H_{2}$ supply (maximum 10 ppm $H_{2}O$ and O_{2} impurity) is required for sample conditioning via catalytic conversion.

+LDL is dependent upon the quality of the sample gas and the integrity of the sampling system.

U.S. Patent # 7,277,177 • U.S. Patent # 7,255,836

